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Generalized-Scattering-Matrix Modeling
of Waveguide Circuits Using FDTD

Field Simulations
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Abstract— This paper presents a hybrid-analysis method
for metal waveguide structures. The method is based on the
generalized-scattering-matrix approach. The whole structure is
divided into several components, each of which is characterized
independently. Some components are analyzed using the
finite-difference time-domain (FDTD) method, while the others
are characterized analytically. For the FDTD simulations, we
introduce a new technique for efficient and rigorous calculation
of the scattering parameters. This hybrid method inherits the
universality of the FDTD method and enables us to analyze
larger and more complex structures using limited computer
resources compared to the single FDTD analysis of a whole
structure. A few results are given as examples to illustrate the
validity of the method.

Index Terms—Finite-difference time-domain method, hybrid-
analysis method, generalized scattering matrix, waveguide circuit
analysis.

I. INTRODUCTION

T HE generalized scattering matrix introduced by the group
of Mittra [1], [2] is a convenient concept for solving

separable waveguide structures. This concept is an extension
of the ordinary scattering matrix used in circuit theory or mi-
crowave network theory, and is modified to take into account
evanescent as well as propagating modes. Consequently, the
obtained composite matrix is physically rigorous; it includes
all necessary interactions of higher order modes between the
components. The synthesis can be carried out by simple matrix
calculations provided that all matrices characterizing each
component of the structure are given. This paper describes the
application of the generalized-scattering-matrix approach to
analyses of waveguide structures, in which the finite-difference
time-domain (FDTD) method is demonstrated to be usable for
characterizing each component.

The time-domain methods are well known as powerful
tools for three-dimensional full-wave field simulations, and
have been found useful in many applications because of
their universality. Since it has already been demonstrated
that the modal-expansion technique works well in the analy-
ses of metal waveguide discontinuities [3]–[5], the time-
domain methods should be used effectively in conjunction
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with the generalized-scattering-matrix technique, especially in
the application of complex waveguide structures. However,
systematic demonstrations on this topic have not been reported
thus far. The reason for this is that a rigorous, yet efficient,
method of -parameter calculation is not available for hybrid-
mode problems in waveguide structures. Each component must
be characterized accurately since an error, if any, may be
accumulated and increased in the matrix calculation processes.
In addition, the calculation needs to be efficient; otherwise,
the usefulness of the whole approach decreases. To meet
these requirements, we have proposed a new technique for

-parameter calculation using the FDTD method [6], [7].
In this paper, we will demonstrate the applicability of the
proposed technique to generalized-scattering-matrix analyses
of practical waveguide circuits. After reviewing the concept
of the generalized scattering matrix in Section II, the new
technique is described in Section III. The technique is then
tested and verified numerically in Section IV, and finally,
a few analysis examples are given in Section V to show
the validity of the whole approach. Section VI offers some
concluding remarks.

II. M ODELING BY THE GENERALIZED SCATTERING MATRIX

A. Generalized Scattering Matrix

Let us briefly review the concept of the generalized scatter-
ing matrix. The concept, when it was proposed, was closely
related to mode-matching techniques. The original objects
modeled by this matrix were the junction planes of uniform
waveguides [2]. Consider a junction of two waveguides. Fig. 1
illustrates an example of an iris that consists of infinitesimally
thin metal inserts in a rectangular waveguide. Now, assume
that only modes exist for simplicity,
and suppose theth mode

(1)

is incident upon the junction plane from region .
The scattered field then occurs in both regionsand , which
can be expressed as follows:

in region (2)
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Fig. 1. An iris in a rectangular waveguide and the model of the iris obtained
by the generalized scattering matrix.

in region (3)

Using the expansion coefficients in (2) and (3), the scattering
matrices at the junction are defined as

(4)

A component, which is a scalar complex function in the
conventional scattering matrix, becomes a submatrix of func-
tions that has infinite dimensions corresponding to an infinite
number of modes in the generalized scattering matrix. The
junction plane is taken to be the reference plane in the original
definition.

The concept of the generalized scattering matrix can be
extended further in a manner that has been done in circuit
theory or microwave network theory. Instead of taking the
junction plane as a reference plane, a set of new reference
planes (planes 1 and 2 in Fig. 1) may be taken such that the
junction comes between them. This extension enables us to
deal with a wider class of discontinuities. For later conve-
nience, we call each reference plane a “physical” port and
suppose that a physical port is accompanied with an infinite
number of “modal” ports. The “voltage ” and “current ”
at each modal port may be defined in the following way. For
instance, the field on the physical port 1 (reference plane 1)
may be expressed as

(5)

(6)

where and are the transverse components of the
electric and magnetic fields, which are propagating or become
evanescent toward the inside [denoted by] or outside [by

Fig. 2. Cascade connection of two generalized scattering matrices.

] of discontinuity region and are the voltage
and current waves defined at the modal port of theth mode.

and are the transverse-field components of theth
mode eigenfunction, which are normalized by

(7)

respectively. The integrals in (7) are taken over the physical
port and the sign of is determined such that

(8)

holds for each wave, where is an unit vector normal to the
physical port oriented in the direction of wave propagation or
evanescence. The nodal voltage and current when the waves
exist in both directions at the same time are given by

(9)

(10)

where the direction of the current is taken to be oriented toward
outside the region . The scattering matrix of region may
then be defined using the voltage waves of all modal ports
as follows:

(11)

where and are the column vectors of modal
voltage waves at the physical port or , the fields
of which are propagating or become evanescent toward the
inside and outside of region , respectively.

B. Cascade Connection of Scattering Matrices

The composite matrix of two cascaded scattering matrices
can be obtained by the following matrix calculations. Consider
a structure that can be separated into two parts. If both are
described by the generalized scattering matrix, as shown in
Fig. 2, the whole structure may also be described using a
generalized scattering matrix as

(12)
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where the bar on the letter denotes that it is a composite
matrix. We introduce operator to indicate the cascade
connection. That is,

(13)

and the submatrices of the composite matrix are formally given
by

(14)

(15)

(16)

and

(17)

For practical computations, these submatrices must be trun-
cated to finite sizes. However, a considerably accurate result
can be obtained by truncating the infinite matrices to a reason-
ably small size in many cases. Here, we considered parts that
were cascaded by physical ports. Extension of the operation
to include parts that have multiports is straightforward. We
can also use these results for deembedding the termination for
a physical port, or even for a particular modal port of a part.
Such an example can be seen later in Sections III-B and IV-B.

III. PARAMETER CALCULATION BY FDTD SIMULATIONS

The generalized scattering matrix may be used in conjunc-
tion with any kind of analysis method. Some components
may be characterized analytically and others numerically.
Each analysis can be carried out completely independently.
By employing a universal numerical method, the scope of
the generalized-scattering-matrix approach is expected to be
potentially extended. In this section, a new technique is
described for the calculation of the component matrix using
FDTD simulations.

A. Time-Domain Modal Voltage and Current

Since FDTD simulations yield time-domain data, one must
first note what the time-domain quantities look like at the
modal ports that have been introduced earlier in the frequency
domain. The answer to this can be derived from inverse
Fourier transforms of the definitions in (5) and (6). In the most
general case, eigenfunctions and should be assumed to
be frequency-dependent. However, in such a case, obtaining
frequency-domain information from the time-domain data is
not very feasible because a convolution has to be performed
many times. To avoid this situation, we have implicitly made
an assumption on the port structure. Let us again consider
region in Fig. 1. This is a portion of a metal waveguide.
The cross-sectional shape of the waveguide may actually
be arbitrary. Between the physical ports there can be any
kind of discontinuity as long as it can be treated by the
conventional FDTD method. The only assumption we make
is a lossless homogeneous structure on the ports, i.e., the
waveguide must be filled with a constant medium at least at
the cross section of the reference planes. The eigenfunctions

of the waveguide modes defined at the ports then become
frequency-independent. Therefore, from (5) and (6), we get

(18)

(19)

where and are inverse Fourier transforms of

and , respectively. These equations mean
that the observed total field can be expressed by a linear
combination of the modal eigenfunctions at any moment.
Consequently, one can find the time-domain modal voltage
and current at any FDTD time step from the observed field dis-
tribution on the physical port using the orthogonality between
the modes, and can eventually calculate the frequency-domain
modal voltage and current using fast Fourier transform (FFT).

B. New Method

When we analyze a circuit using FDTD simulations, it
is necessary to terminate the circuit ports by an appropriate
condition. The absorbing boundary condition (ABC), which
minimizes the reflection of outgoing waves, has been widely
used so far. By adopting the ABC at the boundary of the
analysis region, waves reflected back from the boundary can
be ignored. The -parameters of the circuit are then usually
calculated by taking the ratios of the outgoing voltage wave
spectra to the incoming ones in a wide range of frequen-
cies. However, this method includes two potentially delicate
procedures: the separation of backward- and forward-going
waves at the input port, and the ABC calculation to minimize
undesirable reflection from the boundary. These procedures
require additional computational efforts, which are not minor.

Nonreflection at the circuit ports is by no means the only
condition for -parameter calculation. A more general re-
quirement is port termination by well-defined impedances. In
this sense, the ABC is a particular case where the ports are
terminated by the characteristic impedance of the waveguide,
which is frequency dependent in general. Here, we consider a
termination that is represented by a simple equivalent circuit.
Suppose that we can terminate each modal port by a terminat-
ing impedance , which is different from the waveguide
characteristic impedance. For simplicity, we now consider only
one mode at each physical port, and examine the equivalent
circuit of region in Fig. 1. The circuit diagram of such a
system is illustrated in Fig. 3, where at port 1 and

at port 2. We employ the following definition for
the scattering matrix of this system:

(20)
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Fig. 3. An equivalent circuit of a two-port metal waveguide structure termi-
nated by well-defined impedances.

Voltage waves , , , and can be expressed
using the nodal voltage and current at each modal port as

(21)

(22)

(23)

(24)

In addition, the terminating condition at each port gives

(25)

and

(26)

From (20), together with (21)–(26), one can eventually obtain

(27)

(28)

These formulas enable us to calculate the-parameters from
only the nodal voltages [7]. Consequently, the troublesome
procedure of separating the backward- and forward-going
waves can be avoided. Furthermore, we do not have to worry
about undesirable reflections from the terminations. There exist
some intended reflections in this system; however, everything
is automatically taken into account. Extension to the general
case where there is a finite number of modal ports at each
physical port is straightforward.

It should be noted here that the parameters defined in
Section II and here differ in the two points. First, the standard
impedance is obviously different. Secondly, (20) defines the

-parameters in terms of power flow , while (11)
gives them in terms of voltage waves. These differences yield

different numbers as the parameters for the same structure.
However, of course, either set of parameters is convertible to
the other. Let us denote the matrices defined in (20) by,
such that , in order to distinguish them from the matrices

defined in (11). can be converted to as

(29)

where and are the conversion matrices, and
are given, in the case of Fig. 3, by

(30)

(31)

and denote the characteristic impedance of
each mode on physical ports 1 and 2, respectively. In general
multimode cases, each component in the above conversion
matrices becomes a diagonal submatrix whose dimension
corresponds to the number of modes considered at each
physical port.

We will next explain how to implement the terminations
described above in the FDTD algorithm.

C. Impedance Boundary Condition

Consider again, region in Fig. 1. In order to terminate
port 1 with terminating impedance , the following re-
lationship is requested at every modal port on this physical
port:

(32)

Referring to the definitions of the voltage and current, (32) can
be rewritten as a relationship between the field components,
which must be satisfied on the port plane. That is, using
(5)–(10),

(33)

where and are the transverse components of the total
field, i.e., and is
oriented toward the outside of the analysis region in this case.
Alternatively, in terms of the Cartesian field components,

(34)

(35)

for physical port 1. This condition is called the impedance
boundary condition (IBC), and can be implemented in the
FDTD algorithm as follows.

When we descretize the field in regionin Fig. 1 using an
FDTD mesh, we have two choices in setting the mesh nodes
on each physical port. The first is to adjust the mesh such that

-, -, and -nodes exist on the port plane. This case
is illustrated in Fig. 4(a). The second is to adjust it such that
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Fig. 4. An arrangement of FDTD mesh nodes on the physical port.

-, -, and -nodes come on the plane. In the first case,
the condition of the type

(36)

can be implemented easily. Fig. 4(b) shows an-node and
related neighboring -nodes. The value of can usually be
updated using the values of these-nodes. However, when
the node exists on physical port 1, one of the values, i.e.,

in Fig. 4(b), is nonexistent. Therefore,
instead of this nonexistent value, the condition in (34) may be
used. Substituting (36) into (34), one can rewrite this condition
into the following finite-difference form:

(37)

Notice here that we have used the transformation
, and have taken an average in space for and an

average in time for to evaluate the values at point
and at time . Substituting (37)

into the term of in the original FDTD -
node updating formula, we obtain the following new formula
for updating the nodes on physical port 1:

(38)

Similar formulas can be deduced for the nodes. By
applying these formulas to every and node on physical
port 1, all modal ports on this physical port can be terminated
by the condition in (36). As easily seen, this implementation is
much simpler than those of complicated ABC’s. No additional
memory is required and the computational steps are almost the
same as those for internal nodes. If the second choice of the
mesh setting is employed, an impedance type

(39)

can be implemented similarly.

D. Voltage Signal Source

Next, we will implement the voltage signal source for
exciting a modal port. Originally, the FDTD updating formulas
were directly derived from the differential form of Maxwell’s
curl equations. However, their integral form sometimes pro-
vides better insight into the physical meaning of the formulas.
Let us examine the physical meaning of (38). Equation (38)
may be rewritten as (40), shown at the bottom of this page,
which can be interpreted as

(41)

(40)
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Fig. 5. Physical model of anEx node on the physical port
terminated by the impedance boundary condition of the type
Zterm(w) = 1=(Gterm + jwCterm).

The first term on the left-hand side represents the displacement
current , which crosses the area surrounded by the path

– – – – in Fig. 5(a). The right-hand side gives a part
of the loop integral (on the path– – – ) of the magnetic
field. And the remainder of the loop integral is given by the
second term of the left-hand side in terms of surface currents

and that flow on the physical port (reference
plane). The magnitude of magnetic field at this node should
be equivalent to the total surface current
From this interpretation, an equivalent circuit that describes the
relation between , , , and can be derived,
and it is represented in Fig. 5(b). An excitation term can be
added to this local node by introducing electromotive force
into this equivalent circuit, as shown in Fig. 5(c). This modifies
(40) to (42), shown at the bottom of this page, where is
the time derivative of . In order to excite a certain modal
port, every and node on this physical port needs to be
excited at the same time with the amplitude in proportion to
the eigenfunction. Therefore, we eventually get the following
excitation term, which should be added to the right-hand side

of (38):

(43)

By this term, the modal voltage source of theth mode
having internal impedance is
implemented. is the time derivative of the voltage

. is the value of the component of
the eigenfunction at this point. Similar formula can be deduced
for the -nodes.

IV. NUMERICAL VERIFICATIONS

The procedure for -parameter calculation using the idea
described in Section III is summarized below.

1) Divide a whole structure into parts that are to be modeled
individually, and thereby define the physical ports for
each part.

2) Find the possible modes on each physical port.
3) Build up the FDTD model by setting medium constants

in the mesh.
4) Adopt the impedance boundary condition on every phys-

ical port.
5) Excite modal port on physical port 1 using the

voltage source can be calculated from
in advance.

6) Observe the electric-field distribution on all physical
ports, and thereby extract the nodal voltage of every
modal port at each time step.

7) Calculate Fourier transforms of all nodal voltages.
8) Obtain and for

and using the proposed formulas.
9) Repeat (5)–(8), changing the excitation port to complete

the generalized scattering matrix.

Among these steps, (4)–(8) are newly proposed in this paper.
The following gives numerical verifications of the-parameter
calculation. The issue of the possible mode selection is also
addressed.

A. Hollow Waveguide

Fig. 6(a) and (b) presents the frequency characteristics of
-parameters for a hollow rectangular waveguide. Having the

physical ports terminated by and of
the 6.508-mm-length waveguide are plotted for , ,
and modes, respectively. Here, the difference between
the parameter sets and is clearly seen. Since is
a propagating mode at these frequencies, the magnitudes of

(42)
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Fig. 6. The generalized scattering parameters of a hollow rectangular
waveguide. (a) Magnitude. (b) Phase. Dimensions of the waveguide are
a = 19:05 mm, b = 9:525 mm, and the lengthl = 6:508 mm. Ŝ11 andŜ21
when the both sides are terminated by 500
 are given. The FDTD simulation
was done using a76�x � �y � 20�z mesh, where�x = 250:66 �m,
�y = 9:525 mm, and�z = 325:4 �m. �t = 417:763 fs.

, , and , are obviously zero
and unity, respectively. However, , is not
zero and , is not one, except for a point
around 12 GHz, at which the characteristic impedance of this
mode matches 500. Similarly, since the frequency region is
below the cutoffs of and modes, the magnitudes
of , and , are high, but are
still not unity. These results can be obtained analytically as

(44)

where

(45)

(46)

Fig. 7. Normalized scattering parameters of step discontinuity between two
waveguides. The structure dimensions area = 15:8 mm andb = 7:9 mm
for WRJ-15 (P - or Ku-bands, 12.4–18 GHz) waveguide;a0 = 22:9 mm and
b0 = 10:2 mm for WRJ-10 (X-band, 8.2–12.4 GHz) waveguide. Our results
are compared with those after [8]. The mesh is129�x � 71�y � 40�z,
where �x = 177:528 �m, �y = 143:636 �m and �z = 200 �m.
�t = 239:393 fs. Data are plotted in the frequency range where the
concerned modes are propagating modes. The top nine modes in Table I were
taken into account in this calculation.

(47)

and

(48)

for the mode, for instance. The results obtained by the
new technique compare with the analytical results quite well
as seen in these figures.

B. Step Discontinuity Between Two Rectangular Waveguides

The next structure for the verification is the step disconti-
nuity between a WRJ-15 (- or -bands) waveguide and
a WRJ-10 ( -band) waveguide [8], as shown in the inset of
Fig. 7. When a wave in the mode is incident from port
1, , and modes, where is odd and is even in
this case, can be excited due to the discontinuity. If an induced
mode has the possibility of showing significant magnitudes at
the reference planes, the mode should be considered in the
calculation of modal expansion. However, on the other hand,
since the computational effort increases in proportion to the
number of modes, it is desirable to select the minimum set of
modes that are required to characterize the component with
a certain accuracy. FDTD simulations [
iterations of steps (5)–(8) at the procedure described in the
beginning of this section] are required in general ifand
modes are taken into account at the physical ports 1 and 2,
respectively. In this example, we introduce a guideline for
the mode selection [9], which utilizes quantities of power
dissipation at the resistive ports.

The minimum set is not always found explicitly prior to
the analysis. Let us take as many modes as possible for a
preliminary set determined in step (2) of the-parameter
calculation procedure. In this example, choose the -mode
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TABLE I
SELECTEDMODES FOR THEEXAMPLE IN FIG. 7. RELATIVE Pmax IS THEMAXIMUM

POWER DISSIPATED AT THEMODAL PORT IN THE FREQUENCY RANGE OF INTEREST

(10–40 GHz) WHEN THE PORT IS SELECTED. f@max IS THE FREQUENCY AT

WHICH P BECOMES MAXIMUM . fc IS THE CUTOFF FREQUENCY OF THEMODE

of the WRJ-15 waveguide as the #1 mode, which is a funda-
mental mode, and execute the first FDTD simulation. We then
obtain and , where
and . These parameters constitute a column
vector , which corresponds to
the first column of preliminary port -matrix . Now
consider a new matrix given by

(49)

This operation deembeds the imposed terminating condition
from modal port #1. The first column of deembedded ma-
trix can be
calculated from previously obtained parameters according to
formulas similar to (14) and (16). Using these components,
evaluate

(50)

for each , where . Find the port number
that gives the maximum value of in the frequency range

of interest. Select the port as the excitation port in the
next simulation. Equation (50) represents the relative power
that is dissipated at theth modal port if a unit wave is
incident from port . In the next selection, two ports are
deembedded before evaluating the values of. In this way, we
can select the modes that are to be considered. Table I shows
the order of selected modes. The value of may be used as
a criteria for truncating the number of modes. Fig. 7 presents
results obtained, taking the top nine modes into account, which
compare well with the results after [8].

V. APPLICATIONS

A. Unsymmetrical Resonant Iris

Let us present two examples of the hybrid analysis based
on the generalized scattering matrix. The first one is an
unsymmetrical resonant iris in the WRJ-15 waveguide [8] in

Fig. 8. Magnitude of the reflection coefficient of an unsymmetrical resonant
iris. a = 15:8 mm, b = 7:9 mm, a0 = 11:85 mm, andb0 = 6 mm. The
structure was divided into five parts. Parts ii and/or iv (both are identical)
are analyzed using FDTD with a120�x � 79�y � 20�z mesh, where
�x = 131:667 �m, �y = 100 �m, and�z = 100 �m. �t = 166:667 fs.

Fig. 8. In order to demonstrate the synthesis by the gener-
alized scattering matrix, we divided the structure into five
parts. The matrix of parts ii and iv (these are symmetrical)
was calculated by the FDTD simulations using the presented
new technique. Other matrices were prepared analytically, as
previously shown in the section of a hollow waveguide. The
composite matrix of the total structure was then synthesized by

(51)
Ten modes ( , , , , , , ,

, , and ) in the WRJ-15 waveguide region
and four modes ( , , , and ) in the iris
were selected in the frequency range of 10–18 GHz and
considered in the calculation based on the similar mode-
selection procedure described in the previous section. Fig. 8
plots the frequency characteristics of the reflection coefficient

, with the thickness of iris as a parameter.
Thickness can be varied at once so that only part iii needs
to be replaced. Measured and calculated data after [8] are also
plotted, which agree well with our results.

B. E-Plane Waveguide Filter with Metal Fins

Fig. 9 shows an analysis of an -plane bandpass filter
having three metal fins (inductive posts) in a rectangular
waveguide. In this case, the whole structure was divided into
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Fig. 9. Transmission and return losses of a rectangular waveguideE-plane
filter [10]: a = 19:05, b = 9:525,t = 0:50,d1 = 2:976,d2 = 8:554,
L = 12:273. Dimensions are all in millimeters. The mesh sizes of
76�x � �y � 20�z for parts ii or vi and76�x � �y � 40�z
for part iv were used, where�x = 250:66 �m and�y = 9:525 mm.
�z = 297:6 �m for parts ii/vi and 427.7�m for part iv. �t = �x=2c:
A compensation technique for conductor edge singularities [11] is used in
the FDTD simulations.

seven parts. The matrices of parts ii, iv, and vi were then
calculated by the FDTD. The rest were obtained analytically.
Finally, the composite matrix was calculated as

(52)

The result is presented in the figure, and it agrees well with
measured data [10]. In this result, the lowest five modes, i.e.,

, , , , and modes are taken into
account. However, taking the lowest three modes would be
sufficient for this particular example.

If we compare the hybrid analysis with the single FDTD
analysis of a whole structure, one can see that the former has
the following merits.

1) By dividing a whole structure into parts, the scale
of each analysis roughly decreases to . This reduces
the computer memory requirement or makes the analysis
of more complex structures possible.

2) Some of divided parts may be characterized analytically,
as demonstrated in the previous section. This increases
the total efficiency of the analysis.

3) A structure may be divided nicely so that some compo-
nents become symmetrical or identical, as seen in our
examples. We can build and reuse the matrix database
for frequently appearing components.

4) Since the analysis of each component is completely inde-
pendent, total analysis can be speeded up by using many
computers in parallel. Even step (9) of the procedure
may be carried out in parallel.

5) Due to this independence, the descretization length of
each part can be selected arbitrarily. This allows more
freedom for precise representation of the structure.

6) Since each component does not have high-resonance
by itself in the case of the -plane filter example, the
time-stepping in the FDTD analysis can be terminated
much earlier than that of the whole structure. This
is a significant advantage that should be emphasized
regarding time-domain techniques.

7) Finally, sensitivity analysis of some structure dimensions
becomes easy, as demonstrated in the iris example with
parameter .

VI. CONCLUSIONS

This paper presented a hybrid-analysis method for metal
waveguide circuits. The method is based on the generalized-
scattering-matrix approach. A new technique was introduced
for the FDTD modeling of waveguide components. In the
FDTD simulation, the IBC is used for the port termination
instead of complicated ABC’s, and the generalized scattering
matrix is calculated from nodal voltages of modal ports.
Therefore, some troublesome procedures required in the con-
ventional technique are avoidable, and rigorous analysis can
be performed efficiently. Though we demonstrated the utility
of the method using relatively simple conventional examples,
the substantial advantage of this hybrid method is its ability to
deal with arbitrarily shaped structures. The method is expected
to be used in efficient analyses of larger and more complex
structures.

REFERENCES

[1] G. F. Vanblaricum, Jr. and R. Mittra, “A modified residue-calculus
technique for solving a class of boundary value problems,”IEEE Trans.
Microwave Theory Tech., vol. MTT-17, pp. 302–319, June 1969.

[2] R. Mittra and S. W. Lee,Analytical Techniques in the Theory of Guided
Waves. New York: Macmillan, 1971, pp. 207–217.

[3] T. W. Huang, B. Houshmand, and T. Itoh, “Efficient modes extraction
and numerically exact matched sources for a homogeneous waveguide
cross-section in a FDTD simulation,” inIEEE MTT-S Int. Microwave
Symp. Dig., San Diego, CA, May 23–27, 1994.

[4] M. Righi, W. J. R. Hoefer, M. Mongiardo, and R. Sorrentino, “Efficient
TLM diakoptics for separable structures,”IEEE Trans. Microwave
Theory Tech., vol. 43, pp. 854–859, Apr. 1995.

[5] F. Alimenti, P. Mezzanotte, L. Roselli, and R. Sorrentino, “Analysis
of planar circuits with a combined 3-D FDTD-time domain modal
expansion method,” inIEEE MTT-S Int. Microwave Symp. Dig., San
Francisco, CA, June 18–20, 1996.

[6] T. Shibata, Y. Qian, and T. Itoh, “An FDTD impedance boundary
condition and its application to waveguide discontinuity analyses,” in
IEEE MTT-S Int. Microwave Symp. Dig., Denver, CO, June 8–13, 1997.

[7] T. Shibata and H. Kimura, “Computer-aided engineering for microwave
and millimeter-wave circuits using the FD-TD technique of field simu-



SHIBATA AND ITOH: GENERALIZED-SCATTERING-MATRIX MODELING OF WAVEGUIDE CIRCUITS 1751

lations,” Int. J. Microwave Millimeter-Wave Computer-Aided Eng., vol.
3, pp. 238–250, July 1993.

[8] H. Patzelt and F. Arndt, “Double-plane steps in rectangular waveguides
and their application for transformers, irises, and filters,”IEEE Trans.
Microwave Theory Tech., vol. MTT-30, pp. 771–776, May 1982.

[9] T. Shibata and T. Itoh, “Frequency domain diakoptics for IC packag-
ing structures based on the PEE and FDTD methods,”IEICE Trans.
Electron., vol. E81-C, pp. 801–809, June 1998.

[10] Y. Tajima and Y. Sawayama, “Design and analysis of a waveguide-
sandwich microwave filter,”IEEE Trans. Microwave Theory Tech., vol.
MTT-22, pp. 839–841, Sept. 1974.

[11] T. Shibata and T. Itoh, “A modification of FDTD formulas at conductor
edge singularities,”IEICE Trans. Electron., vol. J80-C-I, pp. 248–249,
May 1997.

Tsugumichi Shibata (M’87) graduated from the
Tokyo National College of Technology, Tokyo,
Japan, in 1980. He received the B.S., M.S., and
Ph.D. degrees in electrical engineering from the
University of Tokyo, in 1983, 1985, and 1995,
respectively.

In 1985, he joined the Atsugi Electrical
Communications Laboratories, Nippon Telegraph
and Telephone (NTT) Corporation, where he
has been engaged in research on computer-aided
design (CAD) applications of electromagnetic-field

analysis, electrooptic sampling of subpicosecond signals in integrated circuit
(IC) chips, and the design of high-speed devices and circuits for data
transmission systems. He was a Visiting Scholar at the University of California
at Los Angeles (UCLA), from 1996 to 1997. He is currently a Senior Research
Engineer and Supervisor at NTT System Electronics Laboratories, Atsugi,
Japan.

Dr. Shibata is a member of the Institute of Electronics, Information and
Communication Engineers (IEICE), Japan.

Tatsuo Itoh (S’69–M’69–SM’74–F’82–LF’94)
received the B.S. and M.S. degrees from Yokohama
National University, Kanagawa, Japan, in 1964,
and 1966, respectively, and the Ph.D. degree in
electrical engineering from the University of Illinois
at Urbana-Champaign, in 1969.

From 1966 to 1976, he was with Electrical
Engineering Department, University of Illinois at
Urbana-Champaign. From 1976 to 1977, he was
a Senior Research Engineer in the Radio Physics
Laboratory, SRI International, Menlo Park, CA.

From 1977 to 1978, he was an Associate Professor at the University of
Kentucky, Lexington. In July 1978, he joined the faculty at the University
of Texas at Austin, where he became a Professor of electrical engineering in
1981, and Director of the Electrical Engineering Research Laboratory in 1984.
During the summer of 1979, he was a Guest Researcher at AEG-Telefunken,
Ulm, Germany. In 1983, he was selected to hold the Hyden Head Centennial
Professorship of Engineering at the University of Texas. In 1984, he was
appointed Associate Chairman for research and planning of the Electrical and
Computer Engineering Department, University of Texas. In 1991, he joined
the University of California at Los Angeles (UCLA), as Professor of electrical
engineering, and became the Holder of the TRW Endowed Chair in microwave
and millimeter-wave electronics. He is currently the Director of the Joint
Services Electronics Program (JSEP), and Director of the Multidisciplinary
University Research Initiative (MURI) Program at UCLA. He has been an
Honorary Visiting Professor at Nanjin Institute of Technology, China, as well
as at the Japan Defense Academy. In 1994, he was made an Adjunct Research
Officer for the Communications Research Laboratory, Ministry of Post and
Telecommunication, Japan. He currently holds a Visiting Professorship at
the University of Leeds, U.K., and is an External Examiner of the graduate
program of the City University of Hong Kong. He serves on advisory boards
and committees of a number of organizations, including the National Research
Council and the Institute of Mobile and Satellite Communication, Germany.
He was the chairman of USNC/URSI Commission D (1988–1990), the vice
chairman of Commission D of the International URSI (1991–1993), and
chairman of the same commission (1994–1996). Since 1996, he has been on
the Long Range Planning Committee of URSI.

Dr. Itoh is a member of the Institute of Electronics, Information and
Communication Engineers (IEICE), a member of Commissions B and D
of USNC/URSI, and was elected an honorary life member of the IEEE
Microwave Theory and Techniques Society (MTT-S) in 1994. He served as
the editor of IEEE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

(1983–1985), and editor-in-chief of the IEEE MICROWAVE AND GUIDED WAVE

LETTERS(1991–1994). He also serves on the administrative committee of IEEE
MTT-S. He was vice president of the Microwave Theory and Techniques
Society (1989) and president (1990).


